Decarbonylative organoboron cross-coupling of esters by nickel catalysis
نویسندگان
چکیده
The Suzuki-Miyaura cross-coupling is a metal-catalysed reaction in which boron-based nucleophiles and halide-based electrophiles are reacted to form a single molecule. This is one of the most reliable tools in synthetic chemistry, and is extensively used in the synthesis of pharmaceuticals, agrochemicals and organic materials. Herein, we report a significant advance in the choice of electrophilic coupling partner in this reaction. With a user-friendly and inexpensive nickel catalyst, a range of phenyl esters of aromatic, heteroaromatic and aliphatic carboxylic acids react with boronic acids in a decarbonylative manner. Overall, phenyl ester moieties function as leaving groups. Theoretical calculations uncovered key mechanistic features of this unusual decarbonylative coupling. Since extraordinary numbers of ester-containing molecules are available both commercially and synthetically, this new 'ester' cross-coupling should find significant use in synthetic chemistry as an alternative to the standard halide-based Suzuki-Miyaura coupling.
منابع مشابه
Nickel-Catalyzed Cross-Coupling of Photoredox-Generated Radicals: Uncovering a General Manifold for Stereoconvergence in Nickel-Catalyzed Cross-Couplings
The cross-coupling of sp(3)-hybridized organoboron reagents via photoredox/nickel dual catalysis represents a new paradigm of reactivity for engaging alkylmetallic reagents in transition-metal-catalyzed processes. Reported here is an investigation into the mechanistic details of this important transformation using density functional theory. Calculations bring to light a new reaction pathway inv...
متن کاملSingle-Electron Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for sp3–sp2 Cross-Coupling
The important role of transition metal-catalyzed cross-coupling in expanding the frontiers of accessible chemical territory is unquestionable. Despite empowering chemists with Herculean capabilities in complex molecule construction, contemporary protocols are not without their Achilles' heel: Csp(3)-Csp(2)/sp(3) coupling. The underlying challenge in sp(3) cross-couplings is 2-fold: (i) methods ...
متن کاملNickel-mediated decarbonylative cross-coupling of phthalimides with in situ generated diorganozinc reagents.
The nickel-mediated cross-coupling of phthalimides with diorganozinc reagents proceeds via a decarbonylative process to produce ortho-substituted benzamides in high yields. In addition to tolerating diverse phthalimide functionality, including alkyl, aryl, and heteroatom containing substituents, this methodology proceeds smoothly with diorganozinc reagents prepared from aryl bromides and utiliz...
متن کاملSynthesis of fluorene-based oligomeric organoboron reagents via Kumada, Heck, and Stille cross-coupling reactions.
Boronic pinacol ester group is not reactive in Kumada, Heck and Stille coupling reaction conditions. Fluorene-based sophisticated organoboron compounds were synthesized by means of Palladium catalyzed Kumada, Heck and Stille cross-coupling reactions from halofluorenyl boronic esters.
متن کاملDual nickel and Lewis acid catalysis for cross-electrophile coupling: the allylation of aryl halides with allylic alcohols† †Electronic supplementary information (ESI) available. CCDC 1515176. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc03140h
Controlling the selectivity in cross-electrophile coupling reactions is a significant challenge, particularly when one electrophile is much more reactive. We report a general and practical strategy to address this problem in the reaction between reactive and unreactive electrophiles by a combination of nickel and Lewis acid catalysis. This strategy is used for the coupling of aryl halides with ...
متن کامل